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Abstract

Contemporary assessment is made of the method of least squares (MLS).
For this purpose geodetic studies related to the LMS topic are summarized.
Conclusions are drawn for the extended general case of adjustment and special-
izations. The limits are presented for the model (MLS) validity, the comparison
of Lagrangean functions in geodesy and mechanics and the use of geodetic so-
lutions in mechanics. Evaluation of the correctness of the model for geodetic
network adjustment and a relevant solution for its development and application
in the study of deformations are presented.

Key words: method of least squares, Lagrangean functions in geodesy
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1. General. The method of least squares (MLS) was developed indepen-
dently by Gauss (Germany) and Legendre (France) [1]. Gauss discovered it in
1794–1795 and developed it further in 1821–1823, but it was first published in
1806 by Legendre. In both cases MLS development is associated with the more
accurate determination of planet orbits. However, it is widely applied in various
fields of science and practice – mathematics, physics, mechanics, etc., for solving
overdetermined systems of algebraic equations, i.e. when the number of equations
exceeds the number of unknowns, when deriving correlation dependencies, etc. It
is also a basic and broadly implemented method in geodesy for processing and
evaluating the accuracy of geodetic measurements, networks, etc. At the same
time a huge number of publications, including capital works, are dedicated to
the development of its theory, models, algorithms and software realization for the
purposes of geodesy. Suffice it to mention those of Markov [2], Helmert [3],
Wolf [4,5], Chebotarev [6], Hristov [7] and others.
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A great deal of the works and research of the author and associates under his
guidance for the purposes of geodesy are also associated with this method and its
use. Systematization and summary of this research is done here, with conclusions
for the general case and specializations, evaluation of correctness and conclusions
for MLS applicability, as well as its improvement in the area of geodesy and
mechanics.

2. Extension of the general case of adjustment by MLS and special-
izations. 2.1. Mathematical model of measurements. The mathematical
model to determine the assessment of the sought quantities, their functions and
their accuracy by the Method of Least Squares in geodesy is based on measure-
ments free of gross and systematic errors that are normally distributed.

Relationships exist between the measured and sought, and often also given,
quantities that have a stochastic and functional character. The objective of the
mathematical model for processing of the geodetic measurements is to cover and
approximate these relationships as precisely as possible.

Two or three kinds of quantities are possible for each problem of adjustment
in geodesy by the method of least squares:

• n is the number of the observed quantities with true values Li, i = 1, . . . , n;

• m is the number of the sought quantities;

• p is the number of the initial quantities.

In some cases the sought quantities coincide with the measured ones. Between
these three kinds of quantities r relationships of the type

(1) fr(X01, X02, . . . , X0m, L1, L2, . . . , Ln, d1, d2, . . . , dp) = 0

are possible.
If (i) the measured values with added relevant corrections are introduced

in (8) instead of the true values, (ii) if the relevant assessments are placed for
the sought parameters, and (iii) if the given quantities are constant values, the
following will be obtained

(2) fr(X
0
1 + x1, X

0
2 + x2, . . . , l

0
1 + ∆l1 + v1, l

0
2 + ∆l2 + v2, . . . , d1, . . . , dp) = 0.

Approximate values are introduced for the assessments and measured quan-
tities. The expansion of (2) in Taylor series, limited to first-degree terms, after
respective designations of the approximate values, partial derivatives and free
terms, leads to

(3)

t11v1 + t12v2 + · · ·+ t1nvn + a1x+ b1y + · · ·+ ω1 = 0,
t21v1 + t22v2 + · · ·+ t2nvn + a2x+ b2y + · · ·+ ω2 = 0,
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
tr1v1 + tr2v2 + · · ·+ trnvn + arx+ bry + · · ·+ ωr = 0,
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Respectively, system (3) may be written in the form

A
rn

∗v
n1

+ B
rm

x
m1

+ ω
r1

= 0
r1
,

G
km

∗ x
m1

+ d
k1

= 0
k1
,

(4)

where

(5)
ω
r1

= A
rn

∗ l
n1

+ c
r1
, A∗ =


t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
. . .

...
tr1 tr2 . . . trn

 , B =


a1 b1 . . . e1
a2 b2 . . . e2
...

...
. . .

...
ar br . . . er

 ,
n > r + k > 0, k < m, r > m.

Here B is the so-called configuration or model matrix, containing the geometric
relationships between the measured and unknown values.

Other k relationships are added in (4) to the relationships in (3), reflecting
additional conditions between the unknowns. For example, in geodetic networks
these may be conditions for the stability of primary elements: initial (baseline)
coordinates, base, direction angle, thus eliminating the singularity of solution.

In this way there are already prerequisites and possibilities to actually derive
the general case of adjustment according to MLS, which has been the objective
of many authors in the 60s of the 20th century, for example Hristov [7].

2.2. General case of adjustment of correlated observations. The
condition for a minimum in adjusting measurements according to MLS is

(6) v∗Q−1
l v = min .

This is substantiated by the following prerequisites. During the adjustment
the number of the measured quantities exceeds the unknown quantities and the
conditions. Approximate values of the adjusted quantities can be calculated by
the given ones on the basis of various combinations. Thus disclosures are ob-
tained and it is not possible the predetermined conditions to be fulfilled. These
are the functional relationships, for example the misclosures to be zero in the
loops, the difference between summed elevation differences and the elevation dif-
ferences calculated from the known elevations to be zero, etc. This means the
measured quantities l should be corrected with corrections v in order the misclo-
sures to be removed. The solution of Legendre and Gauss, obtained on the basis
of condition (6), is the simplest one of all possible solutions for determining the
corrections and obtaining unambiguous solution.

It is also known that when seeking a minimum for the available additional
conditions, the function of Lagrange should be used (Joseph-Louis Lagrange,
1736–1813), which includes coefficients ki, called correlates in geodesy.
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The expanded type of the function of Lagrange in accordance with the pre-
requisites of Section 2.1, proposed by the author in 1973 [8], providing the most
general case, i.e. adjustment of conditional equations with unknowns with addi-
tional conditions between these unknowns, taking into account [9], will have the
form:

(7) Φ
11

= v
1n

∗Ql
nn

−1v
n1
− 2k∗

1
1r

[
A
rn

∗v
n1

+ B
rm

x
m1

+ ω
r1

]
− 2k∗

2
1k

[
G
km

∗ x
m1

+ d
k1

]
.

The proposal of the author consists in the introduction of another third

term in the function of Lagrange −2k∗
2

1k

[
G
km

∗ x
m1

+ d
k1

]
, reflecting the existence of

additional conditions between the unknowns and the given values, along with
another vector with correlates, which is new, and the solution is given in [8].
Further on, except in [8], the solution is also shown in [9,10] and slightly modified
in [11].

For the most general case of adjustment the basic system for determining the
unknowns is obtained from the first derivatives of the function of Lagrange (7),
set equal to zero, and after relevant transformations:

(8)
A∗QlAk1 + + A∗l = 0,

B∗k1 + Gk2 = 0,
G∗x + d = 0.

The system (8) is the basic one, from which after consecutive exclusion the
correlates, the corrections and the unknowns are identified [8–10]:

• Unknowns

(9) x = N−1
2

(
B∗N−1

1 A∗ + GN−1
2 G∗N−1

2 B∗N−1
1 A∗) l−N−1

2 GN−1
3 d

• Correlates

(10)

k1 =
[
N−1

1 BN−1
2

(
B∗N−1

1 A∗ −GN−1
3 G∗N−1

2 B∗N−1
1 A∗)+ N−1

1 A∗] l
+ N−1

1 BN−1
2 GN−1

3 d,

k2 = N−1
3 G∗N−1

2 B∗N−1
1 A∗l−N−1

3 d.

• Corrections

(11)
v = QlAN−1

1

(
BN−1

2 BN−1
1 A∗ −BN−1

2 GN−1
3 G∗N−1

2 B∗N−1
1 A∗ + A∗) l

+ QlAN−1
1 BN−1

2 GN−1
3 d.

The following designations have been accepted:

(12) N1
rr

= A∗QlA, N2
mm

= B∗N−1
1 B, N3

kk
= G∗N−1

2 G.
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The following is valid for a function with adjusted values and its inverse
weight

F1 = F1 (l1 + v1, l2 + v2, . . . , ln + vn, x1, x2, . . . , xm) ,(13)

1

PF
=
[
f∗1i f∗2i

] [Ql −Qv Ql,x

Qx,l Qxx

] [
f1i
f2i

]
.(14)

Respectively, the mean error of a unit weight µ, and the mean errors of the
unknowns mxi (these are σ standards in statistics and mean square errors m in
geodesy) are:

(15)
µ =

√
1

r + k −m
v∗Q−1

l v,

mxi = µ
√
qii (qii are the diagonal elements of the matrix Qx).

2.3. Specific cases of adjustment. The specific cases of adjustment of
observations can be obtained on the basis of the general case. To this end the
respective matrices not participating in a given specific case of adjustment are
nullified [8–10]. So for adjustment of conditional observations with unknowns it is
set G = 0; for conditional observations B = 0, G = 0, for indirect observations
with conditions between the unknowns r = n, A∗ = −E, k1 = k2 = 0, for indirect
observations r = n, A = −E, G∗ = 0, k1 = k2 = 0, for direct observations r = n,
m = 1, A = −E, G∗ = 0, B = [1, 1, . . . , 1].

3. Limits of validity of the linear model of MLS. The linear MLS
model is widely used for solving geodetic problems. However, it is important to
know the limits of its validity and when its correctness is violated a non-linear
model should be used. To this end the magnitude and validity of the residual term
in the expansion of function (2) in Taylor series, defining the functional model of
adjustment, is numerically studied. Moreover, the study is model and numerical
for the most frequently used case – adjustment of indirect observations, applied to
adjust an angular-longitudinal three-dimensional network, built for investigating
displacements and deformations [12].

The direction angles αik, slope distances Dik and zenith angles Zik, defining
the network, are included as measured quantities. In addition, the prerequisites
necessary for expansion in Taylor series are valid for (2). In general form the
residual term Rn [13] is:

(16) Rn =
F (n+1)(θ)

(n+ 1)!
(X −X0)(n−1),

where F (X) is the function (2), X is the adjusted value, X0 is the approximate
value, θ is the number between X and X0, n is the order of the derivative to
which the Taylor expansion is restricted.
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To establish whether the value of the residual term Rn is significant for the
adjusted value X, it is important to compare its absolute value with the given
(accepted) value – accuracy criterion ε. If

(17) |Rn| < ε,

it is accepted that Rn does not influence the preliminarily selected model, and if

(18) |Rn| > ε,

then the influence of Rn is significant and the selected model should be adjusted to
include terms of higher degree from the Taylor expansion in series of the function
F (X).

In geodesy, actually in geodetic networks, mostly the influence of the second
terms is of practical interest and for this reason the study is performed with
restriction only to the second-degree terms. Then the residual term Rn is R2 and
the condition that the linear model is correct is

(19) |R2| < m,

where the mean error m1 of the respective type of quantity l (αik, Dik, Zik) is
accepted as ε. If condition (19) is not satisfied the second-degree terms of the
Taylor expansion of the respective function should be included, i.e. a non-linear
model should be used.

Based on the known relationships

(20)

αik = arctan
yk − yi
xk − xi

= arctan
∆yik
∆xik

,

Dik =
√

(xk − xi)2 + (yk − yi)2 + (zk − zi)2,

zik = arccot
zk − zi√

(xk − xi)2 + (yk − yi)2

the formulas of the residual terms are derived [12].

The calculation of the absolute values of the residual terms and their lim-
itations is conducted for all combinations of the specified parameter values. It
turned out to be rather complicated to summarize the results of the study for
the individual types of investigated quantities. They are presented in an analyti-
cal (tables) and graphical form, automatically composed and plotted by specially
developed software.

An example for the range of application of the linear model of the residual
term for the slope distances |RδDik

2 | is shown in the plot in Fig. 1.

The use of the linear or non-linear model depends on whether the restricting
line is above or under the respective curve of the residual term. Its position
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Fig. 1. Absolute values of a residual term for D and its limits

above the curve of the residual term means that for distances corresponding to
the intersection of both lines the linear model is valid and for larger distances the
non-linear model should be used.

The following more important conclusions can be drawn from the analysis of
the summarized results:

1. The dependencies between drik (Dik) and δxcpr for the functions of the di-
rection angles, slope distances and zenith angles have the same character.

2. The established correct model (linear or non-linear) for adjustment of hor-
izontal directions is also a correct model for adjustment of slope distances.

3. The influence of the second-degree terms in the Taylor series expansion on
the zenith angle functions is greater than that on the direction angles and
slope distances.

The model investigations actually comprise the possible case studies for de-
termining the displacements of the points of the considered object, though realized
under certain prerequisites. The determined generalized limit distances between
the points and mean coordinate displacements allow verifying the linear model
validity in each particular case.
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It is established that the need for a non-linear model is not so rare and
therefore it should not be neglected. In all cases the relevant evaluation should
be made when there is doubt of this necessity, using the results of the conducted
measurements and verifying the correctness of the linear model.

4. Comparison of Lagrangian functions in mechanics and geodesy
and MLS application to solve variational problems in mechanics. The
solution and formulas shown in Section 2 for the general and particular cases
of adjustment represent a good and convenient prerequisite to implement these
solutions in mechanics. This is appropriate and is based on the fact that the
theory and practice of adjustment in geodesy are systematized, reasoned, well
and consistently developed by geodesists, while in mechanics the issues are not
so systematized and generalized. The application goes through the comparison
of the functions of Laplace in geodesy and mechanics. Both functionals are given
accordingly by equation (7) in geodesy as considered above and (equation (4.2.14)
from [4,16]) or

(21)

Φ
11

= v
1n

∗Q−1
l
nn

v
n1
− 2k∗

1
1r

[
A∗
rn

v
n1

+ B
rm

x
m1

+ ω
r1

]
− 2k∗

2
1k

[
G∗
km

x
m1

+ d
k1

]
,

Π1 = Π +

∫
B
λ∗
ε(ε−BU) dB +

∫
Ru

λ∗
u(Ua −Up) dR.

In fact the comparison of their appearance indicates conformity, allowing also
the comparison of their essence. Π corresponds to Φ and the requirement v∗Q−1v
for a minimum is valid for it. The expression ε−BU, which represents the descrip-
tion of the geometric compatibility, corresponds to the relationship A∗v+Bx+ω.
The conditions for displacement Ua −Up comply with the additional conditions
Gx+d. The vectors λ1, respectively λ2, of the Lagrangian multipliers correspond
to the correlates k1 and k2, compensating in mechanics the imperfection of the
model and including the forces and stresses. The displacements and hence the
deformations ε vary and acquire relevant corrections v. Optimal approximation
is achieved for the unknown displacements Ua. They are replaced in the vector
of unknowns x, and together with the preset Up, compile the set of conditions
for displacement and correspond to the quantities d.

The accuracy estimation of the sought mechanical quantities is determined
by adjustment according to direct observations (Section 2.3).

The determination of the variational unknowns in mechanics by MLS goes
through the discretization of the medium, i.e. its division in small elements (up to
triangles) according to certain principles so that it resembles a geodetic network,
covering a section of a given object, for example a territory. To this end a regular
grid is generated parallel to the coordinate axes, adhering to certain conditions,
and as a result intersection – node points are formed. Since it is started with
n elements with m node points, there is a redundancy, i.e. more elements than
the necessary ones for unambiguous identification, which implies the possibility
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of MLS solution. Based on the already established analogy between the sought
quantities, the different formulas from Section 2.2 can be used in the two func-
tionals. In this way the determination of the variational unknowns is realized in
general form. In this case this means that ε will be determined using formula (11),
Ua – (9), λ1 and λ2 – (10). The accuracy estimates of the determined functions
and unknowns can be obtained using formulas (14) and (15).

The weight problem in these solutions in mechanics is resolved taking under
consideration the area of the triangles, length of ropes and type of the medium [11].
In the same manner the forces are derived from the displacements – the inverse
problem of the one solved here, related to forces – displacements. In this context
the relevant solution is made depending on the given elements.

5. Evaluation of the correctness of the model for geodetic network
adjustment according to MLS. To estimate the accuracy, for example of the
position of points in geodetic networks and the geometry of the networks, the
accuracy along the coordinate axes, respectively the position of points is used.
Often the criterion applied is the error ellipsis for two-dimensional networks and
the error ellipsoid – for three-dimensional networks. They are used further on
to optimize the networks. It should be clearly pointed out, however, that these
criteria are very closely related to the choice of the origin and orientation of
the coordinate systems. The magnitude of errors, respectively of the ellipses
and ellipsoids, are functions of this choice. Moreover, the so-called law of error
transfer in geodesy also applies here. But to what extent does it reflect the reality
correctly and what is its effect on adjustment using MLS?

The accuracy of measurement of geodetic networks in their different parts is
practically the same. This is due to the fact that the measurements are conducted
using the same instruments, methods, operators, and under normal, not extreme
atmospheric conditions. It should be expected that the equally accurate measured
quantities after the MLS adjustment should yield equally accurate estimates of
the adjusted quantities, for example coordinates and mean errors (standards),
and they should be minimal and equal – homogeneous throughout the network.
This means that the adjustment should not produce deformed results due to the
model of adjustment. However, this is not so, as illustrated by the used network
for investigating the landslide processes in the area of the town of Balchik (Fig. 2,
[15,16]). Part of it (points 1-4) is located on the stable Dobrudzha plateau, and
the other part – in the landslide zone. Point 1 is accepted as the origin of the local
coordinate system and the +y axis coincides with the side 1–2 of the network. It
is seen in Fig. 1 that the error ellipses in the point coordinates increase with the
distance from the origin of the coordinate system.

Undoubtedly attempts have been made to avoid this model and solutions
have been proposed. A similar proposition is the so-called free adjustment of
networks [17]. A whole theory, solutions and algorithms have been developed. So
the origin of the coordinate system is practically located in the gravity centre
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Fig. 2. Increasing of the error ellipses
with the distances from the origin of the

coordinate system

of the approximate coordinates of its points instead of in one of the ends of the
network. It is true that in this way the distance from the origin to the most
remote determinable point is decreased compared to the case, when the origin
is for example in one of the ends of the network, and that the accuracy of the
solution is improved. The problem, however, is not solved in this manner. Other
additional “cosmetic” solutions are sought as optimization of the networks to
decrease-optimize the size of the error ellipses (ellipsoids). So a kind of “juggling”
is largely achieved without removing the root cause.

It follows from here that another adjustment model is necessary, so that the
strong influence of the origin and orientation of the coordinate system is avoided
and minimized and homogenized estimates are obtained for coordinate accuracy
(mean errors, standards) and positions of points for further use in geodetic net-
works. This is especially important, for example, when using the mean errors
as an element of the criteria for analysis and identification of the actually oc-
curring displacements of points in the networks, built and repeatedly measured
to determine and study the deformations of buildings, facilities and terrains –
landslides.
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T a b l e 1

Coordinates, initial bases and mean square errors

No Point X/Y Base/mx/my (mm)

No m 1–2 1–4 3–4 3–6 4–5 5–6 5–8 5–9 6–8 7–8 7–9

1 1 2000.000 .0 .0 1.5 2.3 2.5 4.8 6.1 5.7 5.5 8.3 7.6

2 2 2000.000 .0 1.4 2.0 2.4 2.7 4.6 6.0 5.6 5.5 8.3 7.5

3 3 1857.307 2.2 1.8 .0 .0 1.9 3.5 4.6 4.3 4.3 7.0 6.1

4 4 1840.516 3.0 .0 .0 2.0 .0 3.9 4.7 4.5 4.2 6.8 6.1

5 5 1587.694 6.9 4.3 3.5 2.5 .0 .0 .0 .0 1.9 3.6 2.4

6 6 1537.841 7.8 5.1 4.5 .0 2.4 .0 2.6 1.9 .0 3.7 2.1

7 7 1233.482 14.4 10.5 8.9 4.7 7.5 3.6 1.8 3.6 1.5 .0 .0

8 8 1307.130 12.9 9.3 7.6 3.7 6.3 3.4 .0 2.8 .0 .0 1.9

9 9 1449.618 9.4 6.2 5.1 1.6 2.9 1.2 2.0 .0 1.4 2.5 .0

10 1 1000.000 .0 .0 1.7 1.8 2.3 3.5 3.9 3.6 3.9 6.5 4.8

11 2 1129.140 .0 1.3 1.4 1.4 2.8 3.6 4.1 3.8 3.8 6.6 4.8

12 3 1111.930 1.5 1.5 .0 .0 2.1 2.5 3.0 2.7 2.8 5.2 3.6

13 4 914.166 2.5 .0 .0 2.1 .0 2.3 2.5 2.5 3.6 5.2 3.9

14 5 980.109 4.0 2.6 2.5 2.3 .0 .0 .0 .0 2.0 2.8 1.9

15 6 1234.778 6.2 5.4 3.8 .0 4.1 .0 2.6 2.1 .0 3.6 2.6

16 7 1068.649 7.7 5.9 5.2 3.9 3.6 3.0 2.5 2.2 2.1 .0 .0

17 8 897.660 7.8 5.7 5.8 5.4 3.3 3.0 .0 3.0 .0 .0 1.9

18 9 1083.303 5.4 4.2 3.3 2.3 2.5 1.6 1.3 .0 1.6 2.0 .0

Such a model for adjustment of precise geodetic networks (angular-longitu-
dinal and height ones) and use in the overall system was proposed by the author
together with relevant algorithms and software realization for the study of de-
formations [13,14,17,18]. Only the part for network adjustment and mean error
determination is presented here.

6. Adjustment of networks, determination of accuracy and fur-
ther use of the solutions. The approximate coordinates are determined for
the accepted initial elements and measured quantities and the network is ad-
justed (Fig. 1).

Pairs of points are consecutively accepted as initial ones, uniformly dis-
tributed in the single parts of the network, and adjustments are conducted with
them. The respective point coordinates and their mean errors are obtained as a
result for the single adjustments (Table 1) [14,15].

It can be expected that the obtained coordinates of the points from adjust-
ment with different initial bases are identical to those of the initial adjustment.
This fact is true because the measurements used for all adjustments are the same
and the pair of coordinates accepted as initial ones are the same as the adjusted
ones during the initial adjustment.
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T a b l e 2

Initial coordinates and mean square errors from the initial
and consecutive adjustment

No Point X/Y mx/my mx/my mx/my

No m (mm) min (mm) mean (mm)

1 1 2000.000 0 1.5 4.0

2 2 2000.000 0 1.4 4.2

3 3 1857.307 2.2 1.8 3.2

4 4 1840.516 3.0 2.0 3.2

5 5 1587.694 6.9 1.9 2.3

6 6 1537.841 7.8 1.9 2.7

7 7 1233.482 14.4 1.5 5.1

8 8 1307.130 13.0 1.9 4.4

9 9 1449.618 9.4 1.2 2.9

10 1 1000.000 0 1.7 2.9

11 2 1129.140 0 1.3 3.1

12 3 1111.930 1.5 1.5 2.3

13 4 914.166 2.5 2.1 2.2

14 5 980.109 4.0 1.9 1.7

15 6 1234.778 6.2 2.1 2.8

16 7 1068.649 7.7 2.1 3.3

17 8 897.660 7.8 1.9 3.3

18 9 1083.303 5.4 1.3 2.2

The mean square errors of the point coordinates, however, for the single
adjustments are different depending on the initial origin, as seen in Table 1.

Representative values of the mean square errors for the individual points of
the network (given in a row in Table 1) can be the minimal ones, other than zero
values or mean arithmetic values for the line.

The initial coordinates and mean square errors for the adjustment and the
respective minimal and mean arithmetic errors from the consecutive network
adjustment are given in Table 2 on the basis of Table 1.

It is seen in Table 2 that the mean square errors of the points are homoge-
neous, with relatively equal size and minimal with the adjustment method pro-
posed herein. This also applies to both errors – minimal and mean arithmetic,
and they should be used in the further considerations and implementations of the
networks. This is especially important in the study of deformations.

Thus a major drawback in the processing of geodetic network measurements
according to MLS is avoided, when the adjustment model yields not real, higher
and distorted estimates of the mean errors of the measured and adjusted quanti-
ties.
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Based on this method of adjusting and producing true, more accurate, ho-
mogenized and minimal estimates for the adjusted quantities, a more accurate
and effective application of MLS is achieved. This is especially important in
the deformation studies of buildings, facilities, terrains and landslides. Here the
minimized and homogenized standards (mean errors) are used in the criteria for
evaluating stability and recording deformations. This increases the sensitivity
of the criteria. Thus by the proposed algorithms and system of programs com-
parison and consistent statistical analysis are made in fact for the differences in
the adjusted after certain measurement periods homonymous invariant elements
(angles and lengths – corresponding to the measured ones or specially preset),
as well as of the point coordinates in the independent two-dimensional angular,
longitudinal or angular-longitudinal geodetic networks [19]. Moreover, as already
mentioned, the stability of the initial and the value of the actual displacements
(coordinate and vector) of the other points of the network are established. The
procedure of verifying the statistical hypotheses and Student’s distribution are
used [8–10,13–15,17].

7. Conclusion. The systematization, development, summary and evalua-
tion of the correctness and applicability of MLS conducted herein, together with
its improvement and implementation for the purposes of geodesy and mechanics,
including for particular applications in investigating deformations, gives contem-
porary geodetic assessment of the method of least squares, which should also be a
prerequisite for MLS further development and application, especially in geodesy
and mechanics.
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